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Lyapunov's method has been used to derive a su$cient condition for the
transverse stability of an axially accelerating beam. A multiple-time-scale
formulation is also presented to study the stability when the beam has constant
axial acceleration/deceleration. In such situations, an accelerating beam is found to
be always stable, whereas a decelerating beam may undergo ephemeral instability.
The non-linear terms do not a!ect the stability condition; they only change the
frequency of oscillation. ( 1999 Academic Press
1. INTRODUCTION

Most of the studies on the vibration of axially moving continuous systems
(e.g. saw-bands, travelling threadlines, magnetic tapes, etc.) have been restricted to
the beams and strings having uniform axial speed. Although the operating speed is
normally maintained constant, the axial speed does vary considerably during the
starting and stopping phases. For a travelling string, numerical studies have
revealed that the response builds up or decays as the string is decelerated or
accelerated respectively [1, 2]. In reference [2], an experiment with a pipe carrying
#uid was also reported to validate the numerical results. Though the stability of
a beam travelling with a periodically varying axial speed has been studied [3], that
with a constant acceleration or deceleration has received little attention.

In the present work, the non-linear vibration of a travelling beam with constant
axial acceleration or deceleration, maintaining the same direction of the axial
movement, is considered. Lyapunov's method has been used to determine the
su$ciency condition for asymptotic stability of a beam having any arbitrary
acceleration. However, in some cases where the method cannot ascertain the
stability, a perturbation method based on Multiple Time Scale (MTS) is used. The
change in the speed due to constant acceleration or deceleration is treated as
perturbation to the uniform speed.
0022-460X/99/420309#12 $30.00/0 ( 1999 Academic Press
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2. THEORETICAL ANALYSIS

2.1. EQUATION OF MOTION

The equation of motion of an accelerating beam, taking only the linear terms, is
given by [4]
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where the symbols are explained in the appendix. The boundary conditions are
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Under the usual assumptions [5], if the geometric non-linear term is included then
the equation of motion is given by
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where e("c2/2);1 is the small parameter. It is assumed that the transverse
damping force on the beam is mainly governed by the particle velocity in the
transverse direction. However, with a damping force assumed to be proportional to
the total velocity [6, 7], the major conclusions of the subsequent analysis remain
unchanged. Thus, introducing a small viscous damping term d(Lw/Lq), the equation
of motion turns out to be
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which can be recast in the standard state-space form as
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In the following, the stability of response w(x, q) is analyzed using either equation
(4) or (5), whichever is convenient depending on the method used.

2.2. STABILITY ANALYSIS USING LYAPUNOV'S METHOD

In this section, Lyapunov's direct method [8] is used to "nd the asymptotic
nature of the response of the system governed by equation (4).

The Lyapunov function is taken as
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Assuming that the axial speed always remains positive (i.e., c'0) and never crosses
the "rst critical speed J¹

0
#n2, the chosen Lyapunov function is positive de"nite,

since :1
0
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(Lw/Lx)2 dx for a continuous di!erentiable
function with w(0)"w(1)"0 [9].

Equation (7) is di!erentiated along the curve satisfying the equation of motion.
Subsequent integration with the help of non-dimensionalized boundary conditions
yields
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It can be seen by simple integration by parts that the term :1
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Rearranging equation (8) as
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it can be seen that for a continuously accelerating beam, i.e., dc/dq'0,
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When dc/dq"0, it is observed from equation (9) that d</dq(0, i.e., the system is
asymptotically stable. When dc/dqO0, the system is stable if

A
dc
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Further, it is seen that the beam is stable (i.e., d</dq(0) when both c(0 and
dc/dq(0 and the inequality (10) is satis"ed. The situation corresponds to an
accelerating beam moving in the direction of !x. Thus, considering the symmetric
nature of the boundary conditions, these two cases are physically identical.

Although the stability is con"rmed if condition (11) is satis"ed, nothing can be
said if the same condition is violated. Similarly, for a decelerating beam (i.e.,
dc/dq(0 but c'0), equation (9) cannot be used to judge the asymptotic stability.
This necessitates the choice of other functions. For such situations, however,
instead of searching for di!erent Lyapunov functions, a perturbation analysis to
determine the stability is presented in the following section.

2.3. STABILITY ANALYSIS USING THE MTS METHOD

In this section the stability of a uniformly accelerating or decelerating beam is
analyzed using the multiple-time-scale method. The change in speed is treated as
a perturbation to the uniform speed. Furthermore, the damping is assumed to be
small. Consequently, the speed of the beam and the damping factor are written,
respectively, as
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and the displacement as
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By substituting equations (12)}(16) into equation (4) and equating the coe$cients of
the like powers of e from both sides, the following equations (in the state-space
form) are obtained:
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Equation (17) is solved to yield
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where c.c. denotes the complex conjugate of the previous terms and Q contains the
terms having all the frequencies except ul

n
. One readily "nds P
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Using the orthogonality relations, P
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is decomposed in terms of the linear modes as
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Equation (24) can be expanded with the help of equation (23) as
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It is to be noted that for a travelling beam,
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Now by substituting a
n
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n
e*hn into equation (25) and equating, separately, the real

and imaginary parts from both sides, the following relations are obtained:
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Obvious from equation (28) is the fact that for a'0, i.e., during acceleration,
daJ

n
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1
(0 or the response decays. But for a decelerating beam (i.e., a(0), the

response may be stable or unstable accordingly as
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respectively. However, the instability lasts only a short time. The ephemerally
observed characteristics of the instability can be explained as follows. As the beam
becomes unstable, the amplitude grows but the speed (remaining positive) also
decreases since the beam decelerates. The value of S, obtained numerically, is found
to decrease monotonically with decreasing speed. Consequently, with decreasing
speed, the beam eventually regains its stability as daJ

n
/dt

1
becomes negative. Thus,

the amplitude builds up to a limiting value before it starts decreasing. This
phenomenon was observed in a pipe carrying #uid when the #ow was stopped [2].



Figure 1. Stability boundaries for a uniformly decelerating beam.
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It should be pointed out that the non-linear terms do not a!ect the stability. They,
as seen from equation (27), only change the frequency of oscillation.

2.4. NUMERICAL RESULTS AND DISCUSSION

Numerical results are presented in this section for a beam having an initial
tension ¹

0
"1. For a beam with its axial speed given by equation (12), the

asymptotic stability is con"rmed using Lyapunov's method (see equation (9)) if

d
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The MTS method, on the other hand, predicts the stability for all possible values
of d

0
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0
'0). For a decelerating beam, the chosen Lyapunov function (see

equation (7)) fails to ascertain the stability. However, it is evident from the MTS
method (see equations (29) and (30)) that the stability depends on the values of
d
0

and DaD. Furthermore, it is obvious from equations (29) and (30) that in the
parameter space (d

0
, Da D ) the boundary delineating the stable and unstable

regions is a straight line. Figure 1 shows these boundaries for three di!erent values
of c

0
. The region above the line (representing the boundary) is stable. As expected,

the damping required to prevent instability increases with increasing initial
speed c .
0



Figure 2. Variation of the response amplitude for a uniformly decelerating beam. d
0
"0)7.

Figure 3. Variation of the maximum overshoot of response amplitude with the magnitude of
uniform deceleration. d

0
"0)7.
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Figure 4. Variation of the overshoot time with the magnitude of uniform deceleration. d
0
"0)7.
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The asymptotic or long-term stability, discussed in the previous section, is shown
in Figure 2. The amplitude is approximately calculated as
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When the damping is not su$ciently large, the response amplitude shows
a temporal rise. The results are obtained by assuming that only the "rst mode is
excited. For the values of damping and axial speed considered, other modes are
found to be stable.

The e!ects of deceleration magnitude on the maximum amplitude rise and the
overshoot-time (i.e., the interval during which the response amplitude remains
higher than the initial value) have been plotted in Figures 3 and 4 respectively.

3. CONCLUSION

The stability of the transverse vibration of a beam having non-uniform axial
speed has been studied using Lyapunov's method. A su$cient condition for the
stability of an accelerating beam has been obtained. Although this technique does
not presuppose any special form of acceleration, a single Lyapunov function cannot
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ascertain the stability for all the values of acceleration or deceleration. A multiple-
time-scale method has been used to adjudge the stability of a beam having constant
acceleration/deceleration. Such an accelerating beam remains stable, but for
a decelerating beam, instability may appear depending upon the values of the
damping and the deceleration. The non-linear term does not play any role so far as
the stability is concerned. It merely changes the frequency of oscillation. However,
the amplitude of a decelerating beam does not grow unboundedly and the beam
regains its stability in the long run.
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APPENDIX: NOMENCLATURE

w* transverse displacement of beam
c* uniform axial speed
¹*

0
initial tension in the beam

o density of beam material
E Young's modulus of beam material
A area of the cross-section of the beam
l length of the beam
I
z

second moment of area of cross-section about the neutral axis
r radius of gyration of beam cross-section"JI

z
/A

c slenderness ratio, r/l;1
e "c2/2
m longitudinal distance of a point on the beam from left support
t time
x non-dimensional distance
q non-dimensional time
w non-dimensional transverse displacement
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c non-dimensional axial speed
¹

0
non-dimensional tension

/
n

nth linear complex normal mode"/R
n
#i/I

ni "J!1
ul

n
linear natural frequency of nth linear mode
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